» Aims to design an ARM SVE environment optimized for Lattice QCD » Grid [7, 8] is a portable open-source Lattice QCD framework written in C++ 11,
> Prototype at the University of Regensburg, Germany, by 2020 maintained by Peter Boyle (Edinburgh) and co-workers

» Pursues evaluation and enhancement of existing SVE software toolchain and » Targets massively parallel architectures supporting SIMD + OpenMP + MPI
upcoming SVE hardware technologies for Lattice QCD applications » |Implements more than 100 tests and benchmarks

» Enables Lattice QCD code optimized for SVE architectures, e.g., the Japanese » ISA-specific code is implemented using intrinsincs and assembly
flagship supercomputer "Post-K" announced for 2021 SIMD family Register size

Intel SSE4 128 bit
Intel AVX/AVX2 256 bit

IBM QPX 256 bit

: ARM N 128 bit
» The ARM Scalable Vector Extension (SVE) targets the HPC market [1] ARM SVE. i
> Key features of SVE hardware generic C architecture independent, user-defined array size

> Wide vector units, ranging from 128 bit to 2048 bit

> Vectorized native 16 bit floating point operations, including arithmetics
~ Vectorized arithmetics of complex numbers (Emabling SVEin Gid
> The silicon provider chooses the vector register length and defines the

performance characteristics of the SVE hardware
> The first SVE hardware officially announced is the Post-K, which comprises

» We use ACLE for our SVE implementation to access the SVE features
» We minimize implications of the VLA programming model and bypass restrictions

512 bit wide vector units, 48 compute cores per node and high performance on usage of ACLE data types
stacked memory [2] > We declare the vector length VL (in bytes) as a compile-time constant
» Key features of the SVE instruction set architecture (ISA) > _Superfluous oops implied by VLA are omitted

> The variety of predications is minimized to fit into the register file
> The templated struct acle<T> (T = double, float) provides convenient
access to ACLE definitions, e.g., predications and data types

> SVE follows a vector-length agnostic (VLA) programming model that adapts
itself to the available vector length (VL)

> VLA predication allows for selection of vector elements to be used for
processing, which enables, e.g., complex control flows within loops

> Support for structure load/store, e.g., load of an array of two-element

» Code example: templated multiplication of two vectors of complex numbers

template<typename T>
struct vector {

structures into two vectors, with one vector per structure element alignas(VL) T v[VL / sizeof(T)]; // C-array

> The ARM C Language Extensions for SVE (ACLE) intrinsics provide };
convenient access to features of the SVE hardware in C/C++ [3]

struct MultComplex {
template<typename T>
inline vector<T> operator () (const vector<T> &a, const vector<T> &b) A

typename acle<T>::sve t z v, a v, b v, r v; // ACLE data types

_ _ svbool t p; // predication
» daxpy in C99 (y; < y; + a X x; with real operands)
void daxpy(double a, double *restrict x, double *restrict y, int n) { p = acle<T>::activate_all_elements (); // define predication
for (int i = 0; i < n; i++) z v = acle<T>::zero(); // z_ v <- FP zero
y[i] = y[i] + a * x[i]; a_v = svldl(p, a.v); // load a_v <- a
} b v = svldl(p, b.v); // load b_v <- b
A : : : r v = svcemla z(p, z v, a v, b v, 90); // complex multiply-add
» Assembly output of the armclang 18.3 SVE compiler (auto-vectorization enabled)
r v = svcmla z(p, r v, a v, b v, 0); //
whilelo pl.d, xzr, x8 // pred. for z_i, y_ti; zzr=0; z8=n; 2z20=a svstl(p, result.v, r v); // store r v -> result
ptrue p0.d // pred. for result wvector return result: // return result
.LBBO_2: !
1d1d {z1.d}, p1/z, [x1, x9, 1lsl #3] // pred. load z1 <- y_A{i..} }:
1d1d {z2.d}, pl/z, [x2, x9, 1sl #3] // pred. load z2 <- z_{1..} . : . .
g 21.d, »0/m, 20.d, z2.d ) sred. multiply-add » Software development, verification and optimization
st1d {z1.d}, pl, [x2, x9, 1sl #3] // pred. store zl -> y_{i..} > We implement multiple coding schemes for SVE (— Lattice 18 proceedings)
incd x9 // tincrement z9 > We verify selected tests and benchmarks emulating multiple VL in the ArmlE
whilelo pl.d, x9, x8 // pred. remaining y_{i..} _ _ _ _
b omi LBBO 9 /) conditional branch to LBBO 2 > At present one coding scheme fails to compile, and some tests give wrong
» Discussion results due to SVE toolchain immaturity
> armclang is unaware of the VL and optimizes for the VLA paradigm > Run-time optimizations will be guided by gem5 CPU simulation (future work)
> The binary code executes for all VL implementations > Sources available at S

https://github.com/nmeyer-ur/Grid/tree/feature/arm-sve

» Compilers
> ARM provides us with their LLVM/clang-based armclang 18 compiler » Improved and more mature development environment
(evaluation version available [4]) » Extended support of the SVE ISA by compilers, e.g., instructions for complex
> RIKEN provides us with the Fujitsu SVE compiler arithmetics and compiler-generated load/store using ACLE
> We test the compilers, stimulate bug fixes and propose improvements in the » Possible endorsement of SVE data types in languages like C and C++
context of research contracts » We stimulate disclosure of details of ARM-based micro-architectures and ISA
» ARM Instruction Emulator (ArmlIE) performance characteristics relevant for HPC code design

> ArmlE allows for functional verification of SVE binaries emulating the SVE
ISA with user-defined VL (freely available [4])

> ArmlE is designed on top of the open-source DynamoRIO toolset enabling
code instrumentation at run-time [5]

> We contribute to DynamoRIO enabling advanced SVE code analysis, e.g.,
instruction mixing and branching statistics (— Lattice 18 proceedings)

N. Stephens et al., IEEE Micro 37 Issue 2 [arxiv:1803.06185]

http://www.fujitsu.com /global /about /resources/news/press-releases /2018 /0621-01.html

“ARM C Language Extensions for SVE", ARM, Tech. Rep. (2017)

> gem> https://developer.arm.com/products/software-development-tools/hpc/documentation

> The gemb simulator is a modular platform for computer architecture research,
encompassing system-level and processor architecture [6]

> RIKEN provides us with access to their gemb simulator of the Post-K CPU

> We optimize our code guided by simulations of the Post-K CPU (future work)

http://www.dynamorio.org/

http://gemb.org/

P. Boyle et al., Proceedings of LATTICE 15 (2016) [arxiv:1512.03487]
https://github.com /paboyle/Grid

o N o g b~ W N e



http://arxiv.org/abs/1803.06185
http://www.fujitsu.com/global/about/resources/news/press-releases/2018/0621-01.html
https://developer.arm.com/products/software-development-tools/hpc/documentation
http://www.dynamorio.org/
http://gem5.org/
http://arxiv.org/abs/1512.03487
https://github.com/paboyle/Grid

